GREEN AUDIT REPORT

Charotar University of Science & Technology [CHARUSAT], Changa

December 2019

EXECUTIVE SUMMARY

The Green Audit of CHARUSAT was conducted to understand the management of various environment components and actions taken thereof.

Following are the important findings of the Green Audit:

Water Management	Necessary steps are taken to reduce the overall water consumption at
	campus by:
	Optimizing TDS/ RO Reject
	Implementing Sprinkler Irrigation System
	• 43 % of Total Rain Water (162844.88 m ³) harvested on campus
Wastewater Management	Wastewater management is done through:
	 Integrated Wetland Technology for Sewage Treatment Soak Pits
	 Future Expansion of STP
Water Bodies	Necessary steps taken for conserving water body:
	Cleaning of water Pond
	• Installation of Aerators for Oxygen replenishment in Pond
Energy Management	Necessary steps taken for energy Management:
	Energy Audit of Campus
	Replacement of Traditional Lights with LED Lights
	Installation of Sensor based Lights
	Solar Power Plant
Built up Environment	Percentage Built up (Land Utilization) Area: 26.52 %
Green Belt	Percentage Area Under Green Cover:70.97 %
Biodiversity	Excellent Biodiversity with Faunal and Floral Heterogeneity
Transportation	Around 50 % manpower travels by Car Pooling
Green Agenda In Syllabus	Variety of Courses for Spreading Environmental Awareness
Green Initiatives	Continued Endeavor for Social and Sustainable development
	NSS activities for campus and community services
Carbon Accounting	3.25 Tons CO ₂ Emission per student per year is much lesser than
	average Indian and Global CO2 Emission by University Students
<u> </u>	L

Suggestions:

- To further reduce CO₂ emission by implementing Green Technologies
- To minimize the plastic usage in Campus
- To consider the possibility of recycling waste paper
- To look for the possibility of installing water meters at water supplies
- To look for the possibility of recycling RO reject water

CONTENTS

Sr. No.	Title/ Topic	Page No.
1	Introduction	4
2	Objectives	5
3	Methodology	5
4	Scope	6
5	Green Audit Assessment Team	7
6	About CHARUSAT	7
7	Environment Policy	8
8	Green Audit Report	9
9	Annexure-I Water Management	15
10	Annexure-II Wastewater Management	19
11	Annexure-III Water Bodies	23
12	Annexure-IV Energy Management	24
13	Annexure-V Built up Area	28
14	Annexure-VI Green Belt	32
15	Annexure-VII Biodiversity at CHARUSAT	37
16	Annexure-VIII Transportation	50
17	Annexure-IX Green Agenda In Syllabus	51
18	Annexure-X Green Initiatives	53
19	Annexure-XI Carbon Accounting	61

1. INTRODUCTION

"Go green before the green goes". CHARUSAT being one of the most Environmental conscious institutions in Gujarat undertook the project of conducting Green Audit for its Campus. The purpose of organizing Green Audit is to upgrade the environment conditions in and around the campus premises. It is carried out with the aid of performing tasks like waste management, energy saving and similar to turn into a better environmental friendly institute.

In this era of globalization as the money game is gaining momentum but risks to human civilization are also getting deeper because of the inappropriate exploitation of natural and man- made resources. One of the most devastating risks that the business today poses to the world is pollution and we are aware how terrible its effects are on the growth and survival of human civilization. Green audit is a step to safeguard the interest of the Environment and to ensure that organizational activities follow appropriate standards.

The dictionary meaning of Green audit is "Inspection of an organization to assess the total environmental impact of its activities or of a particular product or process." Green Audit is a systematic process of identification, characterization, documenting and analysis of all environmental components in an establishment. It aims to analyze environmental practices within and outside of organization, which will have an impact on the eco-friendly ambience.

Green audit is a useful tool for a college / universities to determine how and where they are using the natural resources and how to implement changes and make savings. It can also be used to determine the type and volume of waste, which can be used for a recycling project or to improve waste minimization plan.

Considering increasing importance of environmental sustainability, and the role of higher educational institutions like CHARUSAT in promoting going Green, this project was carried out to ensure that CHARUSAT contributes towards the environment protection through Carbon Footprint reduction measures. The first Green Audit of CHARUSAT was conducted in year 2016 which was the first of its kind in the state of Gujarat.

2. OBJECTIVES OF GREEN AUDIT

The purpose of the green audit of CHARUSAT is to ensure that the practices followed in the campus are in accordance with the Green Policy adopted.

The objectives are as follows:

- 1. To secure the healthy working environment for students and staff members
- 2. To ensure that all environmental rules and regulations are followed
- 3. To analyze the present situation of Carbon Emission and Footprint
- 4. To suggest the best protocols for adding to sustainable development

3. METHODOLOGY OF GREEN AUDIT

The methodology includes the background preparations, inspection of the campus, observation and review of the documentation green audit parameters at intervals, interviewing key persons and data analysis and suggestions. Some data have also been taken from the students' project research works carried out by various departments/ institutes.

4. SCOPE OF GREEN AUDIT

The following environmental components are considered while conducting audit. As the University is also conducting Environment Audit of the campus, scopes are decided based on the objectives of the project and to avoid the overlaps.

Sr. No.	Name	Designation	Affiliation
1	Dr. V. R. Panchal	Professor & Head	M. S. Patel Department of Civil Engineering, CSPIT, CHARUSAT
2	Dr. Dipak Vyas	Ex-Professor & Environment Expert	BVM Engineering College, VV Nagar
3	Mr. Vijay Safaya	Chemical Engineer	M. S. Patel Department of Civil Engineering, CSPIT, CHARUSAT
4	Ms. Mitali Vedanti	Assistant Professor & Environment Expert	M. S. Patel Department of Civil Engineering, CSPIT, CHARUSAT
5	Mr. Gaurav Kapse	Assistant Professor & Environment Expert	M. S. Patel Department of Civil Engineering, CSPIT, CHARUSAT
6	Ms. Hemal Parekh	Assistant Professor & Environment Expert	M. S. Patel Department of Civil Engineering, CSPIT, CHARUSAT

5. GREEN AUDIT ASSESSMENT TEAM

6. ABOUT CHARUSAT:

Charotar University of Science and Technology (CHARUSAT) has been conceived by Shri Charotar Moti Sattavis Patidar Kelavani Mandal - a not for profit premier education trust of India having a social lineage of more than 118 years. CHARUSAT has the distinction of being the first private University in the State of Gujarat (India) to be accredited by National Assessment and Accreditation Council (NAAC) with 'A' grade in the first cycle. It is also accredited with 'A' Grade by the Knowledge Consortium of Gujarat (KCG), Government of Gujarat.

CHARUSAT has developed a lush green eco-friendly campus over 120 acres of land. It has under its ambit six faculties, 9 Institutes and 3 Centers (within the constituent institutes), offering more than 70 different UG, PG, and Doctoral Programs. The faculties include Faculty of Technology and Engineering, Faculty of Pharmacy, Faculty of Computer Science & Applications, Faculty of Management Studies, Faculty of Applied Sciences and Faculty of Medical Sciences.

7. ENVIRONMENT POLICY:

CHARUSAT drives the social and sustainable responsibilities in its operations and curriculum by its commitment to preserve the environment. It is committed to Clean & Green Campus.

CHARUSAT will endeavor to exceed the environmental performance improvement and will:

- Support and fully comply with the requirements of statutory bodies
- Follow regulations and codes of practices
- Reduce, Reuse and Recycle the campus waste
- Use energy and water as efficiently as possible
- Apply the principles and knowledge of environmental engineering for welfare of the local community

Green Audit Report

1	Name of the Organization	Charotar University of Science & Technology
		(CHARUSAT), Changa
2	Water Management	
2.1	Approximate Water Demand	5,35,005 L/ day
2.2	Water Storage/ Holding Capacity in campus	7,60,522 L
2.3	Number of Water Tanks and Capacity	32 Tanks, Refer Annexure -I
2.4	Number of Water Purifiers Installed	41 Water Purifiers, Refer Annexure –I
2.5	Quality of Drinking Water/ Ground Water	Well within IS 10500:2012 and WHO Standards. For more details on water quality please refer Environment Audit Report.
2.6	Water Conservation Measures	 Display of Save Water Placards, Boards near Water Taps Reducing the RO reject by optimizing TDS levels in RO Sprinkler Irrigation System for Gardening Rain water Harvesting in Campus Premises (Refer Annexure-I for more details)
3	Wastewater Management	
3.1	Approximate Quantity of Wastewater generated	4,28,004 L/day
3.2	Wastewater Treatment/ disposal measures	 100 KLD STP using Integrated Wetland Technology 34 Soak Pits / Septic Tanks 1980*6000 (Refer Annexure-II for more details)

0.5		
3.3	Quality of Treated Effluent	Well within standards prescribed by MOEFCC
		and Environment Protection Rules, 1989 for
		discharging sewage in inland waters/ public
		sewers and for land irrigation. For more details
		on water quality please refer Environment
		Audit Report.
3.4	Any problem with Management of	No
	Wastewater	
3.5	Future Plan for Wastewater Management	Expansion of present STP/ Installation of
		additional STP
4	Water Bodies in/around the Campus	
4.1	Type of Water Body	Pond
4.2	Approximate Dimensions of Water Body	3 Acre Area and 20ft. Depth
4.3	Condition of Water Body	Eutrophicated (Please refer Annexure-III)
5	Energy Management	
5.1	Load Consumption at Various Department/ Institutes	Refer Annexure -IV
5.2	Energy Saving Measures Taken	1. Energy Audit
		2. Display of Placards/Boards of Save Energy
		3. Installation of Solar Power Plants /
		Use of Renewable Energy
		Refer Annexure –IV for more details
5.3	Weather renewable energy is utilized	Yes
5.4	If Yes, Type of Renewable Energy	Solar Energy
1		

5.6	% Renewable Energy share	0.041%		
6	Ambient Air Quality			
6.1	PM 10	27.2 μg/m ³		
6.2	PM 2.5	13.38 μg/m ³		
6.3	SOx	$13.92 \ \mu g/m^3$		
6.4	NOx	2.39 µg/m ³		
6.5	Quality of Ambient Air in Campus	Well within stipulated norms by NAAQS 2009		
7	Built-up Environment			
7.1	No. of Buildings	61		
7.2	Total Built up Area	1,57,245 Sq. M.		
7.3	Total Land Area	120 Acre		
7.4	% Built-up Area	32.5 %		
7.5	Site Plan	Refer Annexure-V		
8	Green Belt			
8.1	Total Number of Plant Species	250		
8.2	Total Number of well grown Trees	38150		
8.3	Area Under Green Cover	191455 Sq. m.		
8.4	% Area Under Green Cover	39.42		
8.5	Is indigenous Plant species available at campus, If yes please provide the details	Yes, Refer Annexure-VI for more details		
9	Biodiversity			

9.1	Do you have green spaces / plantation	Yes
	around the building?	
9.2	Types of Faunal Diversity found in campus	Animals, Birds, Insects, Plants, etc.
9.3	Number of different Faunal Diversity	Animals: 29
	found in campus	Birds: 48
9.4	Is there a wildlife pond?	No. Natural Pond available
9.5	Is there a log-pile or similar habitat for	Yes
	small mammals and insects?	
9.6	Are there bird boxes / bat boxes?	Yes
9.7	Is there any Herbs/ Herbal Garden	Yes, Refer Annexure-VII
	Available, Provide Details	
10	Transportation	
10.1	% Staff Members Travelling by Own Cars	35 % Refer Annexure-VIII
10.2	% Staff Members Travelling by Car	48%
	Pooling	
10.3	% Staff Members Travelling by Bus/	10%
	Public Vehicle	
10.4	% Staff Members Travelling by	8%
	Motorcycle/ Bike/ Scooter	
10.5	Average Distance Travelled by Staff	30 KM
	Members	
11	Green Agenda In Syllabus	
11.1	% Teachers of CHARUSAT Emphasizing	87.7
	on Environment protection while teaching	

11.2	Number of subjects dedicated for	Annexure-X
	Environment Awareness/ teaching	
11.3	Is there any compulsory subject on	Yes, Environmental Sciences, Annexure-X
	Environment Awareness, If yes, give	
	details	
12	Green Initiatives	
12.1	Green Initiatives Taken up by University	Refer Annexure-XI
12.2	Recognition/ Awards received in the field	Gujarat Pollution Control Board Recognition
	of Environment	as Schedule-I Environment Auditors,
		• NABL for Environmental Engineering
		Laboratory
12.3	Details of Consultancy/ Research Projects	Refer Annexure-XI
	Obtained in the field of Environment	
13	Carbon Accounting	
13.1	Carbon Footprint/Emission from Campus	20.73 Kilotons/ Year
		Annexure- IX
13.2	Carbon Absorption by Plants in Campus	6.78 Kilotons /Year
		Annexure- IX
13.3	Carbon Absorbed / Saved / Handprint /	6.8 Kilotons /Year
	Campus	Well below average CF of Indian universities
		Annexure- IX
13.4	Carbon Footprint Per Person at Campus	2.62 Tons per person per
		Well below average CF of Indian universities
		Annexure- IX
13.5	Measures to reduce carbon emission	Expansion of Solar Power Plant in Planning
		Stage
		Energy Efficient Fittings
		Sensor Based Lighting System
		Switching to LED Lights

	hereby declared that all the information submit we will be responsible for any lapse regarding	ted in and with respect to this format is correct incorrect or incomplete information.			
	Name & Signature of all the members of Audit Team				
S. No.	Name	Signature			
1.	Dr. V. R. Panchal, Professor & Head, Civil Engineering, CSPIT	ORG			
2.	Mr. Vijay Safaya, Expert Member	19 joy Safar			
3.	Dr. Dipak Vyas, Ex-Professor, BVM Engineering College	Just			
4.	Ms. Mitali Vedanti, Assistant Professor, Civil Engineering	Vedart m. U.			
5.	Mr. Gaurav Kapse, Assistant Professor, Civil Engineering	Var			
6.	Ms. Hemal Parekh, Assistant Professor, Civil Engineering	Herell			

ANNEXURE-I

WATER MANAGEMENT

Water Consumption:

In CHARUSAT, there are total 32 water tanks available at various locations. The details of the water storage tanks are as follows:

Department/ Institute	No. of Tanks	Capacity in Liters
ARIP	1	21363
MTIN	1	44156
CIVIL/MECH	2	56176
CMPICA	2	77974
HOSTEL-4	2	21805
HOSTEL-3	2	21805
HOSTEL-2	2	21805
HOSTEL-1	2	43146
PDPIAS	1	24838
COMPUTER/IT	1	28338
RPCP	1	28338
ADMIN	1	41963
CIVIL, H- 1,2,3,TAPAS, CMPICA	11	22000

MAIN TANK	1	175000
UNDERGROUND SUMP	2	131815
TOTAL	32	760522

Water Demand Calculation:

Based on IS1172:1993, the following water demands are considered:

Education Institution without Boarding Facility: 45 L/Capita/day

Number of Staff & Students without In-house Hostel Facility: 590 + (7299-2000) = 5889

Water Requirement: 5899 * 45 = 265005 L/day

Education Institution with Boarding Facility: 135 L/Capita/day

Number of Staff & Students with In-house Hostel Facility: 2000

Water Requirement: 2000 * 135 = 2,70,000 L/day

Total Approx. Water Consumption per day: 265005 + 270000 = 535005 L

The water used for drinking purpose is supplied after subjecting it to the Water Purification system installed in various institutes/ departments.

The details of water purifiers installation are as follows:

Charotar University of Science and Technology <u>Water Purifiers</u>

Sr. No.	Location	No.	Capacity in LPH	Location	Remark
01.	Univ. Admin	1.	100	Ground Floor (Account Side)	
		2.	100	First Floor (Reading Hall)	
		3.	50	First Floor (Exam Section)	
		4.	07	Ground Floor (Pantry) Provost side	
		5.	07	Ground Floor (Pantry) Estate side	
02.	IIIM	6.	50	First Floor – Boy's Drinking Water Area (Room No. 214)	
	Sec. 14	7.	50	First Floor – Girls' Drinking Water Area	
	10.00	8.	07	Ground Floor (Pantry - Room No. 120)	10
	and the second second	9.	07	First Floor (Pantry)	10 M 10
03.	RPCP	10.	250	First Floor – Boy's Drinking Water Area (Room No. 219)	
		11.	07	Ground Floor (Pantry) Principal side	
04.	DEPSTAR	12.	500	Terrace	
	Building	13.	10	Ground Floor (Pantry)	
		14.	10	First Floor (Pantry)	
05.	EE/EC Building	15.	500	Terrace	
		16.	100	Ground Floor (Workshop Side)	
	1	17.	07	Ground Floor (Pantry) Principal side	
06.	Civil/ Mech Building	18.	250	Second Floor – Boy's Drinking Water Area	2 ton Chiller
07.	PDPIAS	19.	250	First Floor – Boy's Drinking Water Area (Room No. 212)	4
	0.87	20.	10	Ground Floor (Pantry - Room No. 105)	C. LEWIS
08.	CMPICA	21.	50	First Floor – Boy's Drinking Water Area	1.000
1	·	22.	50	First Floor – Girls' Drinking Water Area	
09. ARIP		23.	100	Second Floor – Boy's Drinking Water Area (Room No. 316)	
		24.	100	Second Floor – Girls' Drinking Water Area (Room No. 301)	
10.	MTIN	25.	100	First Floor – Boy's Drinking Water Area	
	· .	26.	50	First Floor – Girls' Drinking Water Area	
11.	Girls Hostel - 1	27.	100	Second Floor (Near Room No. 66)	
		28.	50	Second Floor (Near Room No. 53)	
12.	Girls Hostel - 2	29.	50	Second Floor (Near Room No. 66)	
		30.	50	Second Floor (Near Room No. 53)	
13.	Girls Hostel - 3	31.	50	Second Floor (Near Room No. 66)	
	10 M .	32.	50	Second Floor (Near Room No. 66)	
		33.	50	Second Floor (Near Room No. 53)	
	1 I. I.	34.	50	Second Floor (Near Room No. 53)	
14.	Girls Hostel - 4	35.	100	Second Floor (Near Room No. 66)	
		36.	100	Second Floor (Near Room No. 53)	
15.	Girls Hostel Mess	37.	250	f F	
		250	GF.		
17. Canteen 39. 100 (-C		I-C			
18.	KDCCBANK	40.	250	WATER LAUNDER	2 ton Chiller

Numbering System: CHA/RO/01 to 41.

Fig 1: Typical display of placards for awareness on water usage

Water Harvesting Potential

Runoff Coefficient for Parks and pastures 0.05-0.30Runoff Coefficient for Paved and Built-up Areas 0.9Annual Rainfall of Anand District (mm) 773.6 Annual Rainfall of Anand District (m) 0.7736Annual fresh water volume received on campus through rainfall (cubic m) = $485623 \times 0.7736 = 375677.95$ Surface Runoff generated from Built up area (cubic m) = $130945.23 \times 0.7736 \times 0.9 = 91169.31$ Surface Runoff generated from Green Cover area (cubic m) = $342537.17 \times 0.7736 \times 0.3 = 79496.03$ TOTAL surface runoff from campus = 91169.31 + 79496.03 = 170665.33TOTAL surface runoff from campus lake (cubic m) = $79496.03 \times 2.5 = 30351.50$ Total Ground Water Recharge from Green Cover = $342537.17 \times 0.7736 \times 0.5 = 132493.37$ **Total Rain Water Harvested on Campus = 30351.50 + 132493.3774 = 162844.88 Percentage rain water harvested on campus = (162844.88/375677.95) 100 = 43%**

ANNEXURE-II

WASTEWATER MANAGEMENT

Wastewater Generation & Management:

Considering 80 % of water used gets converted to Sewage: 0.8* 535005 = 428004 L/day

The generated sewage is managed in following ways:

a. Treatment of Sewage in Integrated Wetland Technology followed by discharge into CHARUSAT Pond

Integrated Wetland Technology (IWT)

CHARUSAT has installed a 100 KLD capacity Integrated Wetland System for CHARUSAT Girl's Hostel-4 Sites, as per details mentioned below.

Total Area	110 m ²
Effective Area Overground	10 m ²
Volume of Tank	270 m ³
Cost of Installation	Rs. 8 Lacs

Benefits of the Treatment Technology:

- Odor Free
- No Chemicals
- Economical
- No O/M Energy
- Simple Design
- Sustainable
- Lower Footprint

Fig 2: Cross sectional details of typical Integrated Wetland Technology

(B) Fig 3 A and B: Integrated Wetland Technology of CHARUSAT

Sr. No.	Parameter	Before Treatment	After Treatment
1	рН	7.68	7.88
2	Temperature ⁰ C	33.3	32.4
3	TDS mg/L	713	681
4	EC µs/cm	1099	1048
5	COD mg/L	76.36	35.8432
6	BOD mg/L	14	12
7	Phosphates mg/L	0.02	BLQ
8	Nitrates mg/L	2.3612	N.D.

Quality of Effluent / Sewage before and after treatment

b. Management of Sewage using Septic Tank/ Soak Pits

There are total 34 Soak Pits/ Septic Tanks installed underground for the final disposal and management of sewage generated from the respective buildings. The details of the construction of soak pit are as follows:

The Location of 34 soak pits, Waste Water Sampling Points, Solid Waste disposal points are shown in below figure.

Final Disposal Point

Fig 5: Site Plan of CHARUSAT mentioning location of Soak Pits/ Sampling points, etc.

ANNEXURE-IV

WATER BODIES

There is one natural water body/ pond of 3 Acre Area and 20 Ft Depth near the main entrance gate of CHARUSAT.

Fig 6: Natural Pond in CHARUSAT Campus

ANNEXURE-IV

ENERGY MANAGEMENT

CHARUSAT, in order to reduce its energy consumption has taken various steps such as:

- Energy Audit of CHARUSAT Campus
- Save Energy placards/ Posters/ Usage Instructions in each classrooms
- Installation of Solar Power Plant/ Panels at Campus

Energy Audit:

The primary objective of Energy Audit of CHARUSAT was to determine ways to reduce energy consumption per unit of product output or to lower operating costs. Energy Audit provides a " benchmark" (Reference point) for managing energy in the organization and also provides the basis for planning a more effective use of energy throughout the organization.

Load Consumption of CHARUSAT University for different loads:

LOADS	CONSUMPTION	USE IN
	PER YEAR,	PERCENTAGE
	KWH	
LIGHTING SYSTEM	303551	17%
FANS	261251	14%
AIR CONDITIONER	419084	23%
PUMPS	64156	3%
COMPUTERS	606300	33%
REFRIGERATION	91283	5%
WATER COOLERS	93555	5%
TOTAL	3683490	

Fig 7: Electricity requirement distribution at CHARUSAT

Energy Audit data shows that the load consumption percentage of Major loads in CHARUSAT University.

- \Box Computers consume the highest loads which is around 33 % of total load.
- \Box ACs consume around 19 % of total loads.
- Lighting system consume around 14% of total load.
- \Box Fans consume 12% of total load.
- □ Pumps, Refrigeration and water coolers consume equally around 4 % of total load.

Load Consumption of CHARUSAT University for different departments:

Department/ Institute	Consumption	
_	KWH / year	
Electrical	109667.66	
Civil	97331.14	
Mechanical	89876.34	
COMPI-IT	142846.15	
EC	88701.66	
DEPSTAR	1594803.93	
I2IM	148309.56	
Pharmacy	229181.3	
MCA	286693	
PDPIAs	146474.26	
Admin	101194.3	

Fig 9: Save Energy placards/ Posters/ Usage Instructions in each classrooms

Installation of Solar Power Plant/ Panels at Campus

CHARUSAT has installed a solar power plant on Mechanical/ Civil building terrace. Total 400 panels, each of 250 w rating are installed.

Total 5 inverters of 80 KVA rating each are employed in this plant. All generated energy has been transferred to MGVCL.

Highest power generated in month was 600 units. Presently average 500+ units per month electricity is produced using this power plant.

(A)

(B)

Fig 10 A & B: Solar Power Plant/ Panels Installed at CHARUSAT CL/ME Rooftop

ANNEXURE-V

BUILTUP AREA

CAMPUS LAND ALLOCATION			
Sr. No.	Institute / Department	Ground Floor Built up Area (Sq. Meters)	
1	Central Administrative Building	2105	
2	DEPSTAR (Building - 2)	3017.36	
3	EE/EC (Building - 1)	4151.91	
4	ME/CL (Building - 3)	4577.19	
5	RPCP	4124.45	
6	PDPIAS	4040.86	
7	IIIM	3136	
8	CMPICA	3076.99	
9	ARIP	1748.61	
10	MTIN	1815.73	
11	WORKSHOP	1325	
13	KKGH - 1	1000	
14	JCPGH - 2	1150	
15	CHARUSAT Girls' Hostel - 3	1448.57	
16	CHARUSAT Girls' Hostel - 4	2210	
17	Dining Hall - 1	392	
18	TAPAS ANNAPURNA	740.34	
19	CANTEEN AND GYMNASIUM	537	
20	ANIMAL HOUSE	64	
21	SHADE FOR LUNCH (NEAR CANTEEN)	304.7	
22	OPEN AIR THEATER (TECHNOLOGY ZONE)	2800	
24	MAIN PARKING SHADES (TECHNOLOGY ZONE)	2436	
25	PARKING (MAIN ENTRANCE)	235	
26	PARKING (RPCP)	766	
27	PARKING (CSPIT)	250	
28	PARKING (PDPIAS)	5224	
29	PARKING (HEALTHCARE ZONE)	676	

30	SHADE FOR LUNCH (BEHIND CE/IT BUILDING)	98
31	SHADE FOR LUNCH (BESIDE EE/EC BUILDING)	98
32	SHADE FOR LUNCH (BEHIND PDPIAS BUILDING)	77.1
33	SHADE FOR LUNCH (BEHIND IIIM BUILDING)	77.1
35	HT ELECTRICAL ROOM	62
36	MAIN GATE (E.C.C)	77
37	OVERHEAD TANK & WATER WORK CHANGE ROOM	237
38	CAMPUS ROADS	17235
39	CAMPUS STAGE-1 (TECHNOLOGY ZONE)	189
40	CAMPUS STAGE-2 (HEALTHCARE ZONE)	285
41	SANTRAM XEROX CENTER	30.66
42	STUDENTS STORE	66.61
43	ATM (AXIS BANK)	10
44	K.D.C.C BANK	26.48
45	SHREEJI XEROX	20
46	CANTEEN(SHREEJI)	537
47	MESS(JCP - PAPYLON)	550
48	AMUL PARLOUR	11.61
49	ICE BERG	76.65
50	NES CAFÉ	22.23
51	GIRLS HOSTEL STORE	13.38
52	KRISHNA CHAT	58.1
53	DANNY'S COFFEE BAR	70.1
54	TEA POST	72.93
55	LALABHAI SEVSAL	72.93
56	AMUL PARLOUR(HEALTH CARE ZONE)	11.61
57	SOVENIOUR SHOP	100

58	MAIN SPORTS GROUND	21978
59	DRINKING AREA NEAR CANTEEN	9.29
60	SPORTS GROUND TOILET	20.32
61	CAMPUS STAGE-3 (IIIM- TECHNOLOGY ZONE)	310
62	STAFF QUARTERS - 1	1195.42
66	HT ROOM 2(STAFF QUARTERS)	71
67	HOSPITAL BUILDING-H.T ROOM	584
68	HOSPITAL BUILDING-HVAC PLANT	1276
69	HOSPITAL BUILDING-STP TANK	790
70	HOSPITAL BUILDING-UNDER GROUND SUMP	788
71	HOSPITAL BUILDING-WARD	5000
72	HOSPITAL BUILDING-MAIN DIAGNOSTIC	6000
73	ROADS	17235
	BUILTUP Sq. m.	128795.23
	CAMPUS LAKE (SURFACE AREA) Sq. m.	12140.6
	DEPTH OF CAMPUS LAKE (M)	2.5
	TOTAL LAND ACQUISITION(120 ACRE) Sq. m.	485623
	TOTAL BUILTUP Sq. m.	140936.53

Fig 11: Site Plan of CHARUSAT Campus

ANNEXURE-VI

GREEN BELT

Total No. of Plants Species	250
Area under Green Cover in Sq. M.	344687.17
Total Area (120 Acre) in Sq. M.	485623
% Green Cover	70.97 %

List of the Plant Species planted in Campus

Sr. No.	Names Of Plant Species In Campus
1	Ficush Big
2	Sicush Sunalis Big
3	Cicush Reguler
4	Lagestomiya
5	Foxtel Plam
6	Foxtel Plam
7	Foxtel Plam
8	Mashkarin Plam
9	Vichiya Mareli Plam
10	Litaniya Rubraplam
11	Traiengal Plam
12	Chimpation Plam
13	Travelers Plam
14	Travelers Plam
15	Travelers Plam
16	Aerica Plam
17	Bottal Plam
18	Bottal Plam
19	Bottal Plam
20	Bottal Plam
21	Adinium

22	Adinium Big
23	Kadam
24	Kadam
25	Lemdo
26	Rain Tree
27	Lagestomiya
28	Parsh Pipdo
29	Borsali
30	Tababiya
31	Coconut Big
32	Champa Big
33	Champa
34	Bouch
35	Chiku
36	Ambra
37	Limbu
38	Kamrakh
39	Dadum
40	Deshi Jamun
41	Parsh Jamun
42	Kesher Mengo
43	Jamfar
44	Sitafalm

45	Appele Boor
46	Jamrukh
47	Fanush
48	Trendush Kentiya
49	Hejilono
50	Tikoma Kepanshe
51	Kena Daworf
52	Jashud Hawain
53	Play Mengo
54	Lentina Coper Bhura
55	Lentena Red
56	Shpinjre
57	English Ross
58	Vadeliya
59	Lemon Dornta
60	Tikoma Gavdi
61	Shpyder
62	Areliya White
63	Ficush Panda
64	Aulkata Shpinjari
65	Bogenwell Mix
66	Reban Grash
67	Yellwo Karan
68	Song Of India
69	Rusheliya
70	Engsture Foliya
71	Singoniyaum
72	Mani Plant
73	Yellwo Kachnar
74	Elominda New
75	Torpedo
76	Airnthome

77	Day Lelly
78	Zed
79	Ecoforbiya
80	Ashpara Mile
81	Pinck Kachnar
82	Verygeted Tagar
83	Ixzora
84	Aclifa
85	Dornta
86	Red Mehndi
87	Eyepomiya
88	Eyepomiya Golden
89	Eyepomiya Bleck
90	Junifar Chinesh
91	Bhaji Red/White/Gren
92	Barbena
93	Corten
94	Paspun Lone
95	Semi Carpet Lone
96	Chosla Lone
97	Leela Majnu
98	Jashud Nana
99	Morning Glore
100	Jakomiya Masiya
101	Penda Hansraj
102	Ticoma Capensis
103	Acalipha Batic
104	Ixzora Hybrid Red
105	Minierekta Drawft
106	Thaspesia Drawft
107	Ficuss Panda
108	Rendonasia

109	Arelia Marble
110	Tabernaemontana Drawft
111	Hemelia Drawft
112	Song Of India
113	Dracena Bigdoll
114	Sittresia Purpuriya
115	Schefflera Verigated
116	Money Plant
117	Fountain Grass
118	H T Gulab
119	Plemengo
120	Pendenance Drawft
121	Dypsis Lutescens
122	Bogenwell Mix
123	Ficuss Safary
124	Conocarpas
125	Codiaeum Petra
126	Plumeriya Pudica
127	Dainela
128	Adenium Grafted
129	Monstera
130	Spethifilam
131	Leucophyllum Frutescens
132	Malfejia
133	Ixora Drawft Pink
134	Kesia Byflora
135	Arelia Drawft
136	Acalipha Try Colour
137	Tarpita Blue
138	Tabernaemontana Verigated
139	Angestifolia
140	Tradencasia

141	Heliconia New
142	Alocasia
143	Cena Drawft
144	Drasina Victoria
145	Sensiveria
146	Ixora Singapori
147	Acalipha Java
148	Codiaeum Laxmanrao
149	Braya
150	Zanzibar Gem
151	Faruceria
152	Semidora
153	Drasina Mahatma Gandhi
154	Jasud Hawain Orange
155	Bahomia Tomentosa
156	Goldem Bamboo
157	Acalipha Copper
158	Musanda
159	Tocoma Gaudichavdi
160	Asparagress Falkata
161	Arelia Green
162	Jasud Mini Marble
163	Galphimia Gracilis
164	Royal Palm
165	Hejilona
166	Ixora Drawft White
167	Drasina Ctc
168	Eurphorbia Milli
169	Budhass Bamboo
170	Arelia Verigated
171	Codiaeum Catpan
172	Vadilia

r	
173	Lemon Duranta
174	Bahomia Blackkaina
175	Alamanda Drwft
176	Karamda Drawft
177	Spider
178	Ribion Grass
179	Rushelia
180	Jestropha Drawft
181	Alamanda New
182	Eurphorbia New
183	Ljade Plant
184	Day Lilly
185	Signonium
186	Eranthemum
187	Asparagress Marry
188	Hibiscus Verigated
189	Moneyplant Golden
190	Plumeria
191	Adenium
192	Ipomia Black
193	Burbena
194	Muskarin Palm
195	Black Lilly
196	Damro
197	Nirenium
198	Rohelia Drawft
199	Aglonima New
200	Spingery
201	Baleria
202	Mayur Pank
203	Umrella
204	Kesia

205Saru206Menihot207Parijatak208Tikoma Tent209Gulmehdi210Lilly Cha211Barmashi212Mogra213Jasud Lafranse214Jasmine215Penthus216Murraya Paniculata217Tecoma Purple218Tanmania219Sinesia220Sudarson Lilly221Paras222Golden Road223Tabernaemontana Blue224Tikoma Smethai225Calendra Hybried226Russelia227Bamboo Grass228Snowbuss Drawft
207Parijatak208Tikoma Tent209Gulmehdi210Lilly Cha211Barmashi212Mogra213Jasud Lafranse214Jasmine215Penthus216Murraya Paniculata217Tecoma Purple218Tanmania219Sinesia220Sudarson Lilly221Paras222Golden Road223Tabernaemontana Blue224Tikoma Smethai225Calendra Hybried226Russelia227Bamboo Grass
208Tikoma Tent209Gulmehdi210Lilly Cha211Barmashi212Mogra213Jasud Lafranse214Jasmine215Penthus216Murraya Paniculata217Tecoma Purple218Tanmania219Sinesia220Sudarson Lilly221Paras222Golden Road223Tabernaemontana Blue224Tikoma Smethai225Calendra Hybried226Russelia227Bamboo Grass
209Gulmehdi210Lilly Cha211Barmashi212Mogra213Jasud Lafranse214Jasmine215Penthus216Murraya Paniculata217Tecoma Purple218Tanmania219Sinesia220Sudarson Lilly221Paras222Golden Road223Tabernaemontana Blue224Tikoma Smethai225Calendra Hybried226Russelia227Bamboo Grass
210Lilly Cha211Barmashi212Mogra213Jasud Lafranse214Jasmine215Penthus216Murraya Paniculata217Tecoma Purple218Tanmania219Sinesia220Sudarson Lilly221Paras222Golden Road223Tabernaemontana Blue224Tikoma Smethai225Calendra Hybried226Russelia227Bamboo Grass
211Barmashi212Mogra213Jasud Lafranse214Jasmine215Penthus216Murraya Paniculata217Tecoma Purple218Tanmania219Sinesia220Sudarson Lilly221Paras222Golden Road223Tabernaemontana Blue224Tikoma Smethai225Calendra Hybried226Russelia227Bamboo Grass
212Mogra213Jasud Lafranse214Jasmine215Penthus216Murraya Paniculata217Tecoma Purple218Tanmania219Sinesia220Sudarson Lilly221Paras222Golden Road223Tabernaemontana Blue224Tikoma Smethai225Calendra Hybried226Russelia227Bamboo Grass
213Jasud Lafranse213Jasud Lafranse214Jasmine215Penthus216Murraya Paniculata217Tecoma Purple218Tanmania219Sinesia220Sudarson Lilly221Paras222Golden Road223Tabernaemontana Blue224Tikoma Smethai225Calendra Hybried226Russelia227Bamboo Grass
214Jasmine215Penthus216Murraya Paniculata217Tecoma Purple218Tanmania219Sinesia220Sudarson Lilly221Paras222Golden Road223Tabernaemontana Blue224Tikoma Smethai225Calendra Hybried226Russelia227Bamboo Grass
215Penthus216Murraya Paniculata217Tecoma Purple218Tanmania219Sinesia220Sudarson Lilly221Paras222Golden Road223Tabernaemontana Blue224Tikoma Smethai225Calendra Hybried226Russelia227Bamboo Grass
216Murraya Paniculata217Tecoma Purple218Tanmania219Sinesia220Sudarson Lilly221Paras222Golden Road223Tabernaemontana Blue224Tikoma Smethai225Calendra Hybried226Russelia227Bamboo Grass
217Tecoma Purple218Tanmania219Sinesia220Sudarson Lilly221Paras222Golden Road223Tabernaemontana Blue224Tikoma Smethai225Calendra Hybried226Russelia227Bamboo Grass
218Tanmania218Tanmania219Sinesia220Sudarson Lilly221Paras222Golden Road223Tabernaemontana Blue224Tikoma Smethai225Calendra Hybried226Russelia227Bamboo Grass
219Sinesia220Sudarson Lilly221Paras222Golden Road223Tabernaemontana Blue224Tikoma Smethai225Calendra Hybried226Russelia227Bamboo Grass
220Sudarson Lilly221Paras222Golden Road223Tabernaemontana Blue224Tikoma Smethai225Calendra Hybried226Russelia227Bamboo Grass
221Paras222Golden Road223Tabernaemontana Blue224Tikoma Smethai225Calendra Hybried226Russelia227Bamboo Grass
222Golden Road223Tabernaemontana Blue224Tikoma Smethai225Calendra Hybried226Russelia227Bamboo Grass
223Tabernaemontana Blue224Tikoma Smethai225Calendra Hybried226Russelia227Bamboo Grass
224Tikoma Smethai225Calendra Hybried226Russelia227Bamboo Grass
225Calendra Hybried226Russelia227Bamboo Grass
226 Russelia 227 Bamboo Grass
227 Bamboo Grass
228 Snowbuss Drawft
229 Cufhiya
230 Plectranthus Scutellarioides
231 Lilium Longiflorum
232 Gardenia Jasminoides
233 Jasminum Multiflorum
234 Dastimilar
235 Sansiweria Drawft
236 Night Blooming Jasmine

237	Cestrum Diurnum
238	Lantana Camara
239	Caesalpinia Pulcherrima
240	Hemographics
241	Astechiya
242	Merenta
243	Flerodran Droen Golden

244	Scokeria
245	Adiantum Venustum
246	Eranthemum
247	Faruceria Pot
248	Royal Plam
249	Morraya Exotic
250	Euforbiya

Fig 12: Aerial View of Green Belt at CHARUSAT Campus

ANNEXURE-VII

BIODIVERSITY @ CHARUSAT

Plant Species

Kentiya palm

Bismarkiya palm silver

Chamaedorea palm

Butia palm

Areca palm

Bottle palm

Areca palm

The Areca palm tree is the very best air purifying plant according to the ratings from NASA's research and has the 8th highest removal rate for Formaldehyde according to Dr Wolverton's data. This house plant was referred to as "the most effective air humidifier"

The PALMS in the PALM of CHARUSAT

More than 50 varieties in Campus

Bottle Palm Tree

It got it's name from bottle shaped trunk. This bulged section changes in colours throughout its life from grey, green, and even purple. Palm tress are also great for indoor cultivation because they act as a natural humidifier and detoxifier by removing carbon monoxide and replacing the air with fresh oxygen.

(B)

(F)

(G)

Tree Treasure

Trees are the drivers of ecosystem. They enrich our environment by scrubbing out the toxic carbon dioxide from nature and releasing the beneficial oxygen.

CHARUST campus is a lush green one with its elaborated tree treasure ranging from historical Kailashpati tree and Kadam tree to medicinally important Neem Tree.

Allamanda cathartica

Double tagar tabernaemontana

Euphorbia milii Euphorbia milii

Galphimia gracilis

Hibiscus rosa sinensis

Gardenia Garden-tabebuia rosea

jasminoides

Pigments of flower: Flowers get colors from the pigments called anthocyanin, which are in the class of chemicals called flavanoids.

Thevetia neriifolia

(I)

- Grows 3 feet within 24 hours.
- Higher compressive strength than wood, brick and concrete.
- Higher tensile strength that rivals steel!
- 1)Black Buddha
- 2)Buddha Bamboo
- 3)Elephant Bamboo
- 4)Golden Bamboo
- 5)Green Bamboo
- 6)Variegated Bamboo

Rudraksh Tree (K)

(L)

(M)

Fig 13 A to M: Floral Biodiversity- Plant Species in CHARUSAT Campus

Animal Species

Indian Boar

Sand Boa

Civet Cat

Fig 14 A to C: Faunal Biodiversity- Animal Species in CHARUSAT Campus

Bird Species

(A)

Ducks are birds. Ducks are also called 'Waterfowl' because they are normally found in places where there is water like ponds, streams and rivers. Ducks are related to Geese and Swans.

The bodies of birds are covered with specialized structures known as feathers that grow out of the skin. No other animals has them. Feathers act as a barrier against water and heat loss, are light but very strong, and provide a smooth, flat surface for pushing against the air during flight. The feathers of most species have color, often bright and beautifully patterned

House sparrow

Bee-eater

Kingfisher

Woodpec

Sunbird

Golden oriole

1.White shoulder kite 2.Pied Kingfisher 3.Black kite 4.Shrike 5.Shikra 6.Buzzard

(H) Fig 15 A to H: Faunal Biodiversity- Bird Species in CHARUSAT Campus

ANNEXURE-VIII TRANSPORTATION

The online survey of the all employee of CHARUSAT was conducted and the inputs were taken on the details of the transportation or commuting mode of the employees from their point of residence to CHARUSAT.

(B)

Fig 16 A & B: Chart mentioning Transportation details of CHARUSAT staff members

ANNEXURE-IX

GREEN AGENDA IN SYLLABUS

The M. S. Patel Department of Civil Engineering of CSPIT offers different courses in the field of Environment such as:

- Environmental Sciences (All Programs 1st/2nd /3rd Semester)
- Environmental Sustainably & Climate Change (All Program 3rd Semester)
- Basics of Environmental Impact Assessment (All Program 4th Semester)
- Air Pollution and Control (Civil-5th Semester)
- Environmental Engineering-I (Water Supply Engineering, Civil 6th Semester)
- Environmental Engineering-II (Wastewater Engineering, Civil 7th Semester)
- Environmental Pollution & Control (Focusing on Industrial Pollution Civil -7th Semester)

<u>SDG Handprint Lab:</u> Over the next twelve years, youth need to be key drivers for the successful implementation of the SDGs. It is vital to raise awareness about the 17 SDGs, their targets and the 2030 Agenda for Sustainable Development among youth, build a platform for discussion, and create conditions for their active engagement. The SDG Handprint Lab designed for Higher Education Institutions is an initiative in this direction. It aims at familiarizing students with SDGs, facilitating development of understanding their significance and getting them to take action at the local level.

The overall approach and strategy of the laboratory will be based on the goals, targets and indicators of

the Sustainable Development Goals. The programme involves seven steps.

- □ Orientation to SDGs, Handprint and the Programme
- \Box Selection of the SDG Targets
- □ Investigation (Baseline study)
- □ Developing Project Strategy and Plan of Action
- □ Handprint Action in the community
- □ Impact Evaluation & Project Report
- $\hfill\square$ Evaluation, Certification and Exhibition

<u>NABL Accredited Environmental Engineering Laboratory</u>: The Environmental Engineering Laboratory of M. S. Patel Department of Civil Engineering, CSPIT has been accredited in accordance with ISO/IEC 17025:2005 by the National Accreditation Board for Testing and

Calibration Laboratories-NABL India in the field of Chemical testing (Water/ Wastewater/ Ambient Air/ Stack Emission/ Hazardous Wastes/ Noise) with total accredited 60 tests/ parameters. The accreditation is granted for two years and is valid till 25.11.2020.

In the survey conducted for CHARUSAT teaching staff, 87.7 % teaching staff responded that they emphasize on environmental awareness while teaching their subjects

Do you emphasize on Environment Awareness/ Protection while teaching your subjects? 211 responses

Do you participate in extension activities related to Environment/ Nature? 211 responses

(B)

Fig 17 A & B: Chart mentioning Environmental Initiatives by Faculty Members

ANNEXURE-X GREEN INITIATIVES BY CHARUSAT

CHARUSAT strives to provide a unique learning environment that involves understanding of the Environment Protection and relating it to issues of a local area and using student's skills and knowledge to conduct research and executing Best Environmental Practices.

CHARUSAT has always been supportive of design and to explore the intersections of environment and learning for developing responses and interventions to advance the wellbeing of both students and the environment. This initiative has involved staff members and students of different institutes. Teachers and their students can play a unique role in advancing knowledge of environmental problems and engaging the wider college and social community to address these challenges that affect the lives of all. The various initiatives profiled here provide opportunities for innovation, research, analysis, and partnership, and it is expected that not only that they will be sustained at the CHARUSAT campus, but that they will help to inspire similar efforts on other campuses in the years to come.

A) Tree Plantation Drives

બુધવાર, તા. ૩-૭-૨૦૧૯ નયા પડકાર

ચારસેટ

ચારૂસેટ–હરિચાળા કેમ્પસમાં વિદ્યાર્થીઓ દ્વારા વૃક્ષારોપણ

પર્યાવરણની જાળવણી માટે વિદ્યાર્થીઓમાં જાગૃતિ ફેલાવવાના હેત્સર ચારસેટ યનિવર્સીટી ચાંગાના હરિયાળા ગ્રીન કેમ્પસમાં મંગળવારે વક્ષારો પણનો કાર્યક્રમ યોજવામાં આવ્યો હતો. શ્રી ચરોતર મોટી સતાવીસ પાટીદાર કેળવણી મંડળના ઉપપ્રમખ સી.એ.પટેલ, ચારસેટના પ્રોવોસ્ટ ડો. પંકજ જોશી, સહમંત્રી ઘીરુભાઈ પટેલ, માત્સંસ્થાના ખજાનચી આર.વી.પટેલ, એડવાઈઝર ડો. બી.જી.પટેલ, રજીસ્ટ્રાર ડો. દેવાંગજોશી, કેળવણી મંડળના હોદેદારો - સભ્યો, બિલ્ડીંગ કમિટીના સભ્ય સી.એસ.પટેલ, મહેશભાઈ પટેલ, પક્ષવીબેન પટેલના હસ્તે વૃક્ષારોપણ કરવામાં આવ્યું હતું.

ચારસેટ કેમ્પસમાં છેલા બે વર્ષથી વૃક્ષારોપણ કાર્યક્રમ

યોજવામાં આવે છે. હરિયાળા વગેરેરો પવામાં આવ્યાહતા. કેમ્પસમાં ઉક્લેખનીય છે કે ચારૂસેટ મંગળવારેચારસેટના ૨૦૦ થી કેમ્પસમાં ૭૫૦૦૦ થી વધુ વક્ષો વધુ વિદ્યાર્થી ભાઈ-બહેનો દ્વારા છે જેમાં ૩૦૦ થી ૪૦૦ પ્રકારના વૈવિધ્યપૂર્ણ ′ વુક્ષો, વૃક્ષારોપણ કરવામાં આવ્યું હતું આપ્રસંગે ૧૫૦ થી વધુ ફલ-છોડ રોપા - વેલાથી વિવિધ પ્રકારના રોપા જેવા જે ચારસેટ કેમ્પસ હરિયાળું બન્યું લીમડો, બદામ, ગુલ્મોહોર, છે.આ જ કારણસર ગુજરાત બોરસલી, સરૂ, આમળા, સરકાર અને વિવિધ પર્યાવરણ સરગવો, ગુંદા, જાંબુ, મોસબી, સંસ્થાઓ દ્વારા ચારૂસેટને ગ્રીન એપલબોર, કેરી, લીબું, ખાટી કેમ્પસનો એવોર્ડ સતત મળતો આમલી, કદમ, નીલગીરી, ચંપા રહ્યો છે

Nav Gujarat Samay 04-07-2019

(A)

(B)

Divya Bhaskar

(C) (D) Fig 18 A to D: CHARUSAT in News-Tree Plantation Drives

B) Celebration of World Environment Day

Fig 19: CHARUSAT Celebration of World Environment Day

C) Digital Paperless Examination

Divya Bhaskar 24-09-2019

સિંગાપોર સ્થિત કંપની લિટલમોર ઈનોવેશન લેબ્સ વચ્ચે MoU : 14મી નવેમ્બરે 2400 છાત્રો પદ્ધતિના સાક્ષી બનશે રાજ્યમાં સૌપ્રથમ ચારૂસેટના વિદ્યાર્થીઓ પેપરલેસ પરીક્ષા આપશે

700 પરીક્ષામાં થતો 3.6.50 લાખનો ખર્ચ બચશે

એક ટન કાગળ માટે 24 ઝાડ કાપવામાં આવે છે 6सामान्य रीते એક ટન કાગળ માટે 24 ઝાડ કાપવામાં આવે છે. તેમજ લાખો લિટર પાણીનો વેડકાટ થાય છે. જોકે, યુનિવર્સિટીના નિર્ણયથી કેટલાંય ઝાડ કપાતા બચરો અને પાણીનો બચાવ

યશે. » ધવલ પટેલ, પ્રમુખ, નેચર કરાલ

ચારૂસેટ યુનિવર્સિટીમાં પેપરહેસ એક્ઝામિનેશન સિસ્ટમના અમલીકરજ્ઞ માટે આગામી સમયમાં વિશેષ તાલીમી વર્ગો યોજવામાં આવશે. નોંધનીય છે કે, યુનિવર્સિટીમાં વિવિધ ફેકલ્ટી, ડિપાર્ટમેન્ટમાં વાર્ષિક 700 જેટલી નાની-મોટી પરીક્ષાઓ યોજવામાં આવતી હતી. જેમાં આન્સર શીટ અને ગ્રાચારિયાહ, વાઈસ પ્રેસિડેન્ટ (સોલ્યુશન્સ એન્ડ સેલ્સ) અમિત દેસાઈ, સિનિયર મેનેજર પ્રતિક પટેલ હાજર પેપરનો મળી કુલ રૂા. સાડા છ લાખ રૂપિયા ખર્ચો થતો હતો. હવે તે બચરો

આ અંગે યુનિવર્સિટીના પ્રોવોસ્ટ ડો. પંકજભાઈ જોશીએ જણાવ્યું હતું કે, ઈ-ટેબલેટમાં હોલ ટિકિટથી માંડીને પ્રશ્નપત્રો આપેલા હશે અને આ જ ઈ-ટેબલેટમાં ીદ્યાર્થીએ જવાબ લખવાના રહેવે. વિદ્યાર્થીઓએ આપેલા ઉત્તરોનું મૂલ્યાંકન પણ કલાઉડ પ્લેટફોર્મ મારહતે ઓનલાઈન થશે. જેથી યુનિવર્સિટીના પરિણામો ઝડપથી

SERIES | REFA SERIES પેટલાદના ચાંગા સ્થિત ચરોતર યુનિવર્સિટી ઓફ સાયન્સ એન્ડ ટેકનોલોજી દ્વારા લેવાતી યુનિવર્સિટીની

તમામ પરીક્ષાઓ હવેથી પેપરલેસ ડિજિટલ સિસ્ટમથી

લેવાનો નિર્ણય કરવામાં આવ્યો છે. રસપ્રદ બાબત તો એ છે કે રાજયભરમાં ચારૂસેટ યુનિવર્સિટી સૌપ્રથમ આ સિસ્ટમ દાખલ કરી રહી છે. જેના ભાગરૂપે ઉત્તરવહીઓ,

પ્રશ્નપત્રો, હોલ ટિકિટમાં વપરાતા પૈયરનો બચાવ થશે

અને પર્યાવરણની જાળવણી ઘશે. સાથે સાથે પરીક્ષા પદ્ધતિની ગુલવત્તામાં પલ વધારો થશે. જેના અનુસંધાને

તાજેતરમાં ચારૂસેટ યુનિવર્સિટી અને સિંગાપોર સ્થિત કંપની લિટલમોર ઈનોવેશન લેબ્સ વચ્ચે એમઓયુ કરાયા

હતા. યુનિવર્સિટીને તમામ સુવિધા આ લેબ પુરી પાડશે.

હવે.. ચોરી નહીં થાય કારણ છે 'ઇ-ટેબલેટ'

મૂલ્યાંકન પણ કલાઉડ પ્લેટકોર્મ મારકતે થશે

ઉત્તરવહીઓ, પ્રશ્નપત્રો, હોલ ટિકિટમાં વપરાતાં કાગળો બચશે

(B)

261 641.

Nav Gujarat Samay 4-09-2019 લેસ ડિજિટલ પરીક્ષ

નવગુજરાત સમય > આણંદ

🛚 હવે પરીક્ષા પેનથી નહીં પણ વિદ્યાર્થીઓ આંગળીના ટેરવે આપશે. પરીક્ષામાં પ્રશ્નપત્રો અને ઉત્તરવહીના બદલે ઇ-ટેબલેટનો ઉપયોગ થશે. પરીક્ષાની હોલ ટિકિટથી લઇને પરિણામ સુધીની તમામ પ્રક્રિયા પેપરલેસ ડિજિટલ હશે. ચાંગા સ્થિત ચારૂસેટ યુનિવર્સિટી દ્વારા પેપરલેસ કાર્જિટલ પરીક્ષા માટે સમગ્ર ગુજરાત રાજ્યમાં પહેલ કરવામાં આવી છે. ચારૂસેટ યુનિવર્સિટી અને સિંગાપોર સ્થિત લિટરમોર ઇ્નોવેશન લેબ્સ કંપની વચ્ચે એમઓયુ કરવામાં આવ્યા છે.

ગુજરાતમાં સૌપ્રથમ ડિજિટલ પરીક્ષા માટે પહેલ કરનાર ચારૂસેટ યુનિવર્સિટી દ્વારા પરીક્ષાની હોલ ટિકિટ, પ્રશ્નપત્રો, ઉત્તરવહીમાં વપરાતા પેપરનો બચાવ કરીને પર્યાવરણ માટે ઉદાહરણીય કામગીરી કરવામાં આવી છે. પાત પરંતુ તોટ ઇલા કરોયા કોર ગાય કરવાયા આપા છે. વાંદુ છો ગાય પાછ, તો છે તે પાંચે કે અંગે છે આપા ક્યાં છે ગાય કિઝિટલ પરીક્ષણી પરીક્ષાલક્ષી કાંગગીરામાં ગુજરાવામાં સિનિયર મેજર પ્રતિક પરેલ ઉપસિવ્ય રહ્યા હતા. વાયરો થશે સાથે સાથે પર્યાવરશનું જતન પણ થશે. ચારૂસેટના પ્રમુખ સુરેન્દ્ર પટેલ, મંત્રી ડો.એમ. તાજેતરમાં ચારૂસેટ યુનિવર્સિડી અને સિંગાપોટ સ્થિત સી.પટેલ, છે ગલથી મંજીના ઉપપ્રમુખ સી.એ પટેલ કંપની લિટલમોર ઇનોવેશન લેબ્સ્ વચ્ચે સમજૂતી કરાર- અને કિસ્જાભાઇ પટેલ, ટ્રસ્ટીઓ, સલાહકારો, હોદેઇરો એમઓય પરહસ્તાક્ષર કરાયા હતા જે અંતર્ગત સિંગાપોરની લિટલમોર ઇનોવેશન લેબ્સ દ્વારા ચારૂસેટ યુનિવર્સિટીને બિરદાવવામાં આવ્યું હતું.

બા સવિધા પરી પાડશે. ચારૂસેટ યનિવર્સિટીમાં પરીક્ષ દરમિયાન વાપરવામાં આવતી હૉલ ટિક્ટિ, પ્રશ્નપત્રો ઉત્તરવહી, પુરવણીને બદલે વિદ્યાર્થીઓને ઇ-ટેબલેટ ઇ-ટેબલેટ આપવામાં આવશે. જેમાં હૉલ ટિકિટથી માંડીને પ્રશ્નપત્રો આપેલા હશે અને આ જ ઇન્ટેબલેટમાં વિદ્યાર્થીએ જવાબ લખવાના રહેશે. ચારૂસેટના પ્રોવોસ્ટ ડો.પંકજ જોશી દ્વારા ડિજિટલ એક્ઝામીનેશન અમલીકરણના અભિયાન અન્વયે આ પગલું ભરવામાં આવ્યું છે. સમજૂતી કરાર પર દરમિયાન ચારૂસેટ યુનિવર્સિટીના

રજિસ્ટ્રાર ડો.દેવાંગ જોશી, એડવાઇઝર અશોક પટેલ, પ્રો.એચ.જે.જાની, ઇ-ગવર્નન્સ સિસ્ટમના કો.ઓર્ડિનેટર ત્રા.અત્વ.ક.શપા, ઇ-ગેવર્ગમ્સ ત્સહરના કા.આંગગર ડો.અતિ પટેલ, એક્ઝામિનેશન સેક્શનના ઓએસડી ડો.અમિત ઠક્કર, ડેપ્યુટી રજિસ્ટ્રાર ડો.હરીશ દેસાઇ તથા લિટલમોર ઇનોવેશન લેબ્સ તરફથી પ્રેસિડેન્ટ બીજુ ઝાચારિયાહ, વાઇસ પ્રેસિડેન્ટ અમિત દેસાઇ અને

અને વિવિધ ફેકલ્ટીના ડીન, આચાર્યો દ્વારા આ કાર્યને

..પરીક્ષામાં પ્રશ્નપત્ર-ઉત્તરવહીના

બદલે ઇ-ટેબલેટનો ઉપયોગ થશે

છાત્રોના ઉત્તરોનું મુલ્યાંકન ક્લાઉડ પ્લેટકોર્મ મારકતે ઓનલાઇન થશે ડિજિટલ પરીક્ષા અંતર્ગત વિદ્યાર્થીઓએ આપેલા ਤੁਰਤਾਬਾ ਅਗਦ ਬਹੁਤ ਕਰਨਾ ਸ਼ਾਹਿਰ ਦੇ ਸਾਹਿਰ ਦੇ ਕਾਰ ਗੁਰਿਕਟਿਟੀ ਪ੍ਰਤੀਸ਼ਾ ਪਟਰਿੰਗ ਕਿਸ਼ਤਾਗੀਰਗ ਕਬੂ ਤੁਟੁਫ਼ ਬਾਂਬੇ, ਪਟੀਸ਼ਤੀ ਨੇ ਤੇਵੇਗ ਸ਼੍ਰਾਕਾਂਤਗਰਾਂ ਪਾਰ ਰਾਨ੍ਹੀ ਫ਼ਾਟ। ਗਿਬਮਿਰ ਕਿਸ਼ਰੇਪਾਰ ਤੁਟਾਡੇ, ਨੱਥੀ शिक्षण) ਹੁਰਕਰਾਸਾਂ ਪਰ ਓਰਟੀਰਟ ਕਬਾਣੀ ਬਾਂਬੇ.

ચારૂસેટ યુનિવર્સિટી અને સિંગાપોરની લિટરમોર ઈનોવેશન લેબ્સ કંપની વચ્ચે MoU

શૈક્ષણિક સ્ટાફ , વિદ્યાર્થીઓ માટે તાલીમ વગે અને ડેમો રખાશે ચાર્સ્ટર ચુનિવર્સિટીના પરીક્ષાં, સુધારણા એકમ દ્વારા પરીક્ષાલક્ષી પદ્ધતિમાં નવતર પ્રચોગો સમચાનુસાર હાથ ધરવામાં આવે છે. જેના ફળસ્વરૂપે વિધાર્થીઓને પરીક્ષાના પરિશામો સમચસર પ્રાપ્ત થાય છે. આ ઉપરાંત ટ્રાબ્લકીપ્ટ તથા પોડિઝાન ડિગ્ની પ્રમાણપત્રો પણ વિધાર્થીઓને પરિણામની સાથે જ આપવામાં આવે છે. પેપરલેસ ડિજિટલ ચુનિવર્સિટી એક્ઝામિનેશન સિસ્ટમના અમલીકરણમાં શૈક્ષબિક સ્ટાક અને વિધાર્થીઓ માટે વિશેષ વાલીમ વર્ગો વોગ્વપામાં આવશે. તેમજ સારેઅનર 2019માં શિરલ્યોન ઇનોવેશન લેબ્સ દ્વારા ચારૂસેટ ચુનિવર્સિટીમાં પેપરલેસ ડિજિટલ એક્ઝામિનેશનનો પ્રચોગ હાથ ધરવામાં આવશે.

(\mathbf{C}) Fig 20 A to C: CHARUSAT in News-Digital Paperless Exam

Benefits of Paperless Digital Examinations

Considering one student undergoes Four Internal Exams and Two End Semester University Exam.

Paper required in traditional Exam system: 8 Pages Answer Sheet for Internal Exam and 24 Page Answer Sheet for University Exam

Total Paper Required for Exams Per Year = [(8*4) + (24*2)] * Number of Student Appeared

For AY 2018-19:

Number of students appeared the Digital Paperless Exam in AY 2018-19: 2400

Total Paper Required for Traditional System of Examination: [(8*4) + (24*2)] * 2400 = 192000

Around 1 Ton of Papers saved

The average amount of water used to make one piece of A4 paper is more like 10 L.

Saving in terms of Water Usage: 192000 * 10 = 1920000 L = 1920 KL of Water

Saving in terms of Money: 192000 / 500 = 384 Paper rims (Approx.) = 384 * Rs. 300

= Rs. 1.15 Lacs

Savings in Terms of Trees to be cut:

One tree makes 16.67 reams of copy paper, or 8,333.3

= 384/16.67 = 23.035= 24 Trees

For Upcoming Years:

The Digital Paperless Exam will be implemented in all Institutes and for all students in phase wise manner.

Total Paper Required for Traditional System of Examination:

- = [(8*4) + (24*2)] * Total Students Enrolled
- = [(8*4) + (24*2)] * 7299
- = 583920 Nos
- = Around 2.6 Ton of Papers saved

The average amount of water used to make one piece of A4 paper is more like 10 L.

Saving in terms of Water Usage: 583920 * 10 = 5839200 L = 5839.2 KL of Water

Saving in terms of Money: 583920/500 = 1167.8 Paper rims (Approx.) =1167.8 * Rs. 300

= Rs. 3.5 Lacs

Savings in Terms of Trees to be cut:

One tree makes 16.67 reams of copy paper, or 8,333.3

= 1167.8/16.67 = 70.05 = 71 Trees

D) Organizing workshops, training programs and Knowledge Sharing

Fig 21: Workshop on Towards Climate Resilient India

Dr Vikram M Pattarkine	Gaurav Kapse	Mitali Vedant	₩ Sudheer NELG	Jay Bhavsar
1 sudhir	Chakradhar Iyyunni	/ Devang	Kanchal Dave	# Parth's iPhone
Gauri Bapat	Hemal Parekh	Dipali Patel	₽ Pinal Patel	Parimal Kolhatkar
₩ Renuka Vijairaghav	Megha Desai	SARASWATI	vyas vipul	المعنى ۲ Prabhin Sukumaran
swati kekre X	Shreerang Nara	₩ Bhargav Shobhana	Mehul Katakiya X	Neha Chauhan

Fig 22: Webinar on Coronavirus Pandemic and Global Environment, What Can We Learn?

Fig 23: Lecture on Human Crocodile Conflicts Climate Change

Fig 24: Lecture Series on Environment and

E) Environmental Audit Cell

CHARUSAT has been recognized as a Schedule –I Environmental Auditor by Gujarat Pollution Control Board from Sept. 2017. Since 2017, CHARUSAT has handled the Environment Audit of more than 32 big and medium industries across the Gujarat.

F) Technology and Knowledge Sharing through MoU's:

CHARUSAT entered into an MOU with Center for Environment Education (CEE), Ahmedabad. The Centre for Environment Education (CEE) in India was established in August 1984 as a Centre of Excellence supported by the Ministry of Environment and Forests. The organization works towards developing programmes and materials to increase awareness about the environment and sustainable development. The center is currently headed by Shri Kartikeya Vikram Sarabhai one of the world's leading environmental educators and a dedicated community builder.

29912. dl. 29-X-2096

નચા પડકાર

સાતત્યપૂર્ણ વિકાસ માટે ચારૂસેટ ચુનિ.માં <u>Sandesh 21-04-2019</u> દેન્ડપ્રિન્ટ એકશન લેબની સ્થાપના ચારસેટમાં એકશન લેબની સ્થાપના દસ દિવસના કોર્સ માટે સિવિલ

આણંદ, તા. ૨૦ યુનાઇટેડ નેશન્સ (યુએન)ના સાતત્યપૂર્ણ નેશન્સ વિકાસના હેતુ માટે ચારૂસેટ હનિવર્સીટીમાં હેન્ડપ્રિન્ટ એક્શન લેંબની સ્થાપના કરવામાં આવી છે.

આ લેબ યએનના સસ્ટેઈનેબલ ડેવલપમેન્ટ ગોલ (SDG)ને વિદ્યાર્થીઓન પાયાના શિક્ષણમાં આવરી લઈને કલાસરૂમ સેશન્સ તથા કિલ્ડવર્ક દ્વારા ચામ્ય ક્ષેત્રમાં તેના અમલીકરણ સુધીના તમામ પાસાને આવરી લેશે. ચાડસેટમાં આ લેબ સ્થાપવા માટે ચારસેટ યુનિવર્સીટી અને સેન્ટર ફોર એન્વાયર્નમેન્ટ એજ્યુકેશન (CEE) વચ્ચે અમદાવાદમાં કરાર કરવામાં આવ્યા હતા. આ કરાર પર હસ્તાક્ષર દરમિયાન ચારૂસેટના પ્રમુખ સુરેન્દ્રભાઇ પટેલ, CEEના ડીરેફટર કાર્તિકેય પંચાય, SDG લેબ કોઓડીનેટર

ડો. હિતેશ્રી શાસ્ત્રી હાજર રહ્યા સારાભાક ચારસેટ યુનિવર્સીટીના રજીસ્ટ્રાર ડો. આ પ્રસંગે ચાર્ટ્સેટના પ્રેસીડેન્ટ સુરેન્દ્ર પટેલે જણાવ્યું દેવાંગ જોશી, CEEના પ્રોગ્રામ ઓ ફિસર માઘવી જોશી, હતું કે ગ્રામ્યક્ષેત્રે ચારૂસેટ શિક્ષણ ચારૂસેટ સંલગ્ન CSPITના જાગૃતિ માટેના અનેક કાર્યક્રમો ચલાવે છે જે અંતર્ગત ગ્રામય પ્રિન્સીપાલ ડો. એ.ડી.પટેલ. સિવિલ એન્જિનિયરીંગ શાળાઓના શિક્ષકો અને ડીપાર્ટમેન્ટના વડા ડો. વિજય વિદ્યાર્થીઓને માર્ગદર્શન આપવામાં આવે છે.

ની વસતીની પ્રાધાનયતા ઘરાવતુ દેથલી સંસાધનો શિક્ષણથી વંચિત રહ્યું છે ગામમાં સિચાઈની સુવિધા નહિવત હોવાથી તથા ભૂગર્ભ જળ ખારા થઈ ગયા હોવાથી ગ્રામજનો ચોમાસું પાક પછી મજૂરી તરફ વળે છે. આ સ્થિતિમાં વિદ્યાર્થીઓ સારાભાઇએ /ણાવ્યું હતું કે આ લેબનો રસ લઇ ગ્રામવિકાસના કાર્યો કરે તો ગામને અચક લાભ મળશે. નોધનીય છે કે ચારૂસેટે

એન્જિનિયરીંગના ૧૧૩ વિદ્યાર્થીઓએ પ્રવેશ મેળવ્યો

તો. દેધલીની મુલાકાત દરમિયાન ગામ ગેવા કેન્દ્ર દેથલીના ડિરેક્ટર ડો. વિપુલે

પ્રધાર્શ્વ કે OBC - ST - SC

મુખ્ય હેતું નેટવર્ક લેબ ટીમ ઉભી કરી વિદ્યાર્થીઓને એક જાગૃત નાગરીક તરીકે સમાજમાં સામાજિક પ્રતિબહ્લતા અંતર્ગત આગળ આવીને સંપન્ન માનવ દેધલી ગામ દતક લીધું છે. તમાજ તથા જીવસૃષ્ટિ તેમજ પર્યાવરણની જાળવણી માટેના પાઠ શીખવવાનો છે. આ લેબમાં

વલ્લભવિદ્યાનગર : ચાંગા યુનાઇટેડ નેશન્સ યુએનએના સાતત્યપૂર્ણ વિકાસના હેતુ માટે ચારૂસેટ યુનિવર્સિટીમં હેન્ડપ્રિન્ટ એકશન લેબની સ્થાપના કરવામા આવી હતી. આેબ યુએનએના સ્સ્ટેઇનેબબલ ડેવલપમેન્ટ ગોલને વિદ્યાર્થીઓના પયાના શિક્ષણમાં આવરી લઇને કલાસરૂમ સેશન્સ તથા ફિલ્ડ વર્ક દ્વારા ગામ્યક્ષેત્રમાં તેના અમલીકરણ સુધીના તમામ પાસાને આવરી લેશે. કાર્તિક સારાભાઇ. ચારૂસેટ પ્રમુખ સુરેન્દ્ર પટેલ, ૨જીસ્ટ્રાર ડૉ. દેવાંગ જોષી, માધવી જોષી, પ્રિ. ડૉ.એ.ડી.પટેલ, ડૉ. વિજય પંચાલ, ડૉ. હિતેશ્રી શાસ્ત્રી હાજર રહ્યા હતા.

Fig 25: CHARUSAT in News- SDG Handprint Lab

કાર્તિકે ય

G) Community Initiatives:

- Students were encouraged to work with the local communities of the adopted villages by CHARUSAT's CREDP in areas like solid waste management, reduction of plastics use, and conversion of plastic waste as well as paper waste to more valuable products
- There were also studies of environmental health problems in the local communities and steps needed to mitigate these problems. A closely related area is "Environmental Service-Learning" whereby student interns could learn about environmental problems while studying the environment of local communities.

ANNEXURE-XI CARBON ACCOUNTING

1) CARBON EMISSION

The estimate the GHG emissions of the CHARUSAT campus for the academic year 2018-2019 is divided into three major scopes:

Scope 1	Scope 2	Scope 3
• Direct Emission	• Indirect emissions	• Other indirect
(Emissions from	(Emissions from the	emissions (Emissions
facilities within its	imported electricity	from commuting and
organizational	consumed by the	travel, waste generated
boundaries)	organization)	by the organization)

Scope 1: Direct Emission

Direct Emission caused by:

- A. Burning of fossil fuel in electric generator sets
- B. Campus fleet (cars, tractors, ambulance, etc.)

Scope 2: Indirect Emission

Indirect Emission caused by:

A. Indirect energy emissions of imported electricity from state electricity board

Scope 3: Indirect Emission

Indirect Emission caused by:

- A. Commuting by faculty, staff, and (i.e. commuting of students between home and university
- B. Papers used within institute for answers sheets, questions papers, notices, circulars, teaching notes, lab manuals, curriculum booklets, and many more material used in both printed and unprinted form;
- C. Various wastes generated within the campus including organic, metal, glass, paper, and plastics

Scope 1: Direct Emission

Direct Emission caused by:

A. Burning of fossil fuel in electric generator sets

Diesel Used in Year 2018-19: 3000 L

 CO_2 Emission = Diesel Used * Emission Factor = 3000 * 2.86 Kg CO_2/L

 $= 8580 \text{ Kg CO}_2 = 8.58 \text{ Tons} / \text{ Year}$

B. Campus fleet (cars, tractors, ambulance, etc.)

Diesel Used in Year 2018-19: 38319 L

Petrol Used in Year 2018-19: 4829 L

Emission Factor: Diesel: 2.86 Kg CO₂/ L, Petrol: * 2.86 Kg CO₂/ L (IPCC 2006)

CO₂ Emission = (Diesel Used * Emission Factor) + (Petrol Used * Emission Factor) =

 $= 38319 * 2.86 \text{ Kg CO}_2/\text{ L} + 4829 * 2.43 /\text{L}$

 $= 109592.34 + 11734.47 \text{ Kg CO}_2$

= 121.32 Tons/ Year

Scope 2: Indirect Emission

Indirect Emission caused by:

A. Indirect energy emissions of imported electricity from state electricity board Electricity Used in Year 2019: 14393106 KWH

CO2 Emission = 14393106 * Emission Factor = 14393106 KWH * 0.82 Kg/KWH

(Source: International Energy Agency (2009: 47–57)

= 12234140.1 kg = 11802.35 Tons / Year

Scope 3: Indirect Emission

Indirect Emission caused by:

A. Commuting by faculty, staff, and (i.e. commuting of students between home and university

Emission Factor	Bus	Omni buses	Two wheelers	Light motor vehicles (Passenger)	Cars and jeeps	Taxi	Trucks and lorries	Light motor vehicles (Goods)	Trailers and tractors	Others	R
CO ₂	515.2	515.2	26.6	60.3	223.6	208.3	515.2	515.2	515.2	343.87	N S

CO₂ Emission in g/km Source: Mittal and Sharma, 2003

For Staff Commuters:

Number of Staff: 590 Number of Working Days: 291

Approx. Distance Traveled = 30*590*291 = 5150700 km

% Staff Members Travelling by Own Cars	35 %
% Staff Members Travelling by Car Pooling	48%
% Staff Members Travelling by Bus/ Public Vehicle	10%
% Staff Members Travelling by Motorcycle/ Bike/ Scooter	8%
Average Distance Travelled by Staff Members	30 KM

Based on the survey conducted of CHARUSAT Employees

CO₂ Emission by Car Travel: 5150700 * 0.35 * 223.6 g/km

= 403.09 Tons/ Year (Source: Mittal and Sharma, 2003)

CO₂ Emission by Car Pooling: 5150700 * 0.48 * 208.3 g/km

= 514.98 Tons/ Year (Source: Mittal and Sharma, 2003)

CO₂ Emission by Bus Travel: 5150700 * 0.10 * 515.2 g/km

= 265.36 Tons/ Year (Source: Mittal and Sharma, 2003)

CO₂ Emission by Two wheeler: 5150700 * 0.08 * 26.6 g/km

= 10.96 Tons/ Year (Source: Mittal and Sharma, 2003)

Total CO₂ Emission from Staff Commuting: 1194.39 Tons/Year

For Students Commuters:

Considering 60% students commute daily.

Number of Student commuters: 7299 * 0.60 = 4379

Number of Working Days: 291

Average Distance Travelled by Student Commuter: 30 KM

Approx. Distance Traveled = 30*4379*291 = 38232162 km

% Students commuters Travelling by Bus	60%
% Students commuters Travelling by Car Pooling	30%
% Students commuters Travelling by Two Wheeler	10%

CO₂ Emission by Car Pooling: 38232162 km * 0.30 * 208.3 g/km

= 2389.12 Tons/ Year (Source: Mittal and Sharma, 2003)

CO₂ Emission by Bus Travel: 38232162 km * 0.60 * 515.2 g/km

= 11818.3 Tons/ Year (Source: Mittal and Sharma, 2003)

CO₂ Emission by Two wheeler: 38232162 km * 0.10 * 26.6 g/km

= 101.69 Tons/ Year (Source: Mittal and Sharma, 2003)

Total CO₂ Emission from Student Commuting: 14309.11Tons/Year

CO₂ Emission from Transportation: 1194.39 + 14309.11= 15503.50 Tons/Year

B. Papers used within institute for answers sheets and blank paper usage (questions papers, notices, circulars, teaching notes, lab manuals, curriculum booklets, and many more material used)

Answer Sheets

(Papers) used per year: 583920 Nos = Around 2.6 Ton of Papers

500 Papers sheets of A4 size produces 2.26 Kg of CO2

CO₂ Emission = (5839200/ 500) * 2.26 = **26.39 Tons** / **Year**

Other Papers

Number of Paper rim used in AY 2018-19: 1396

Number of Pages in one rim: 500

Considering 100,000 sheets of paper from new sources requires over 8 trees and almost 2,000kWh of energy and carbon footprint of 6,000kg. (Source: www.goodenergy.co.uk)

1000 kg copying paper manufacturing emits 647.89 kg CO₂

Total Number of A4 size papers used: 500 * 1396 = 698000

CO₂ Emission = (698000/100000) * 6000 = 41.88 Tons Per Year

CO₂ Emission from Paper Usage = 41.88 + 26.39 = 68.27 Tons / Year

C. Various wastes generated within the campus including organic, metal, glass, paper, and plastics

CO₂ Emission from Waste to Landfilling: For Year 2018-19:

Considering total waste amount per year is 87300 kg sent for land filling

Considering Emission Factor as 0.421 kg CO2e/kg (Source Huella Chile, MMA 2017)

CO₂ Emission: 87300 * 0.421 = 36.75 Tons of CO₂

 CO_2 Emission from Waste to Incineration: For Year 2018-19: Considering total waste amount per year is 29100 kg sent for land filling Considering Emission Factor as 0.7 kg CO₂/kg (Source Huella Chile, MMA 2017) CO₂ Emission: 29100 * 0.7 = 20.37 Tons of CO₂

CO₂ Emission from Waste Management: 36.75 + 20.67 = 57.42 Tons per year

2) CARBON SAVING:

Various campus activities and facilities are resulting into saving in carbon emission which are calculated below:

A. CO₂ Absorbed by Green Cover/ Trees @ CHARUSAT Campus

B. CO₂ Emission Saved from Digital Paperless Exam

C. CO₂ Emission Saved from Solar Power Plant

A. CO₂ Absorbed by Green Cover/ Trees @ CHARUSAT Campus

Trees

Total Number of Well Grown Trees @ Campus: 38150

Considering coverage areas of tree canopy = 0.0003 ha

Tree Cover = 0.0003 * 38150 = 11.445 ha = 28.28 Acre (114445.1 sq. m.)

Considering CO_2 Absorbed by trees = 569.07 tons/ha/year

CO₂ Absorbed by trees = 569.07 * 11.445 = 6513.00 Tons/ Year

Grassland

Area of Grass Land = Total Land Acquisition - Total Built-up – Tree Cover in Sq. M.

= 485623 - 140936.53 - 114445.1

= 230241.37 Sq. M. / 56.89 Acre / 23.023 ha

Considering CO_2 Absorbed by Grassland = 12 tons/ha/year

CO₂ Absorbed by Grassland/ lawn = 12 * 23.023 = 276.27 Tons/ Year

Amount of CO₂ Absorbed by Green Cover/ Trees = 6513 + 276.27 = 6789.27 Tons/ Year

B. CO₂ Emission Saved from Digital Paperless Exam

500 Papers sheets of A4 size produces 2.26 Kg of CO2

CO2 Saved = (5839200/ 500) * 2.26 = 26.39 Tons / Year

C. CO₂ Emission Saved from Solar Power Plant

Considering 600 KWH of Electricity is produced per month

Solar Electricity produced Per Year = 600*12 = 7200 KWH

CO₂ Saved = 7200 KWH * 0.85 Kg/KWH

= 6120 kg = **6.12 Tons / Year**

CARBON ACCOUNTING

	Carbon Emission in Tons/ Year						Carbon Saving in Tons/ Year		Net Carbon Emission in Tons/ Year			
	Scope 1 Scope 2 Scope 3		3			Scope 1	Scope 2	Scope 3				
Ι	DG Set	8.58			Transportation	15503.5	Green Cover	6789.27				
C	Campus	121.3	Electricity Import	11802.4	Paper Usage	68.27	Digital Paperless Exam	26.39	6601 0	4980.57	8807.41	
	Fleet	2			Waste Management	57.42	Solar Power Plant	6.12	6691.9	-0091.9	4900.57	0007.41
	Total	129.9	Total	11802.35	Total	15629.19	Total	6821.78				

CF total (In kilotons of CO₂ Eq.) = Scope 1 + Scope 2 + Scope 3 - Carbon Savings

= 129.9 + 11802.35 + 15629.19 - 6821.78

= 20739.66 Tons/ Year = 20.73 kilotons of CO₂ Eq.

Total No. of Staff and Students = 590 + 7299 = 7889

CF (in tons of CO₂ Eq.) = 20739.66 / 7889 = 2.62 Tons of CO₂ Per Person per Year

Comparative analysis of carbon footprint studies

A comparative analysis of studies from other universities of India and across the globe is tabulated below. Birla Institute of Technology, Pilani (BITS), De Montfort University (DeMU), University of Cape town (UCT), Norwegian University of Science and Technology (NTNU), Yale University and University of Illinois at Chicago (UIC) are compared for its Carbon Footprint with CHARUSAT.

Particulars	CHARUSAT,	BITS	DeMU	NTNU	UCT	Yale Uni.	UIC			
	Changa	Pilani	(Ozawa	(Larsen	(Letete et	(Thurston	(Larsen			
		(Kuldip et	et al.	et al.	al. 2011)	et al.	et al.			
		al. 2018)	2013)	2013)		2011)	2013)			
CF total (In										
kilotons of	20.73	16.5	50.7	92	84.9	817	275			
CO2 Eq.)										
CF per										
Person	2.62	4.65	1.13	4.6	3.6	53.54	10.04			
(in tons of	2.02	4.03	1.15	4.0	5.0	35.34	10.94			
CO2 Eq.)										
Scope wise C	Scope wise CO ₂ emissions in %									
Scope 1	-32 %*	1.00 %	6.90 %	30.50 %	0.90 %	65.50 %	64.50 %			
Scope 2	25 %	50.10 %	17.50 %	19.10 %	80.50 %	15.80 %	17.40 %			
Scope 3	43 %	48.90 %	75.60 %	80.60 %	18.70 %	18.70 %	18.10 %			

* Carbon Negative based on Net Carbon Emission in Scope 1

CHARUSAT, Changa has lesser per person Carbon Footprint than that of other Universities listed above and have Negative Carbon Footprints in Scope 1 of direct emissions.

References:

https://www.carbonbrief.org/the-carbon-brief-profile-india https://www.carbonneutral.cl/programa-huella-chile/ https://www.goodenergy.co.uk http://www.indiaenvironmentportal.org.in/ http://www.tree-nation.com/

Babalola, Ayoola & Layeni, Abayomi & Lawal, Nurudeen. (2015). Vehicular Emission: Carbon Sequestration Potential of Teak Tree (Tectona Grandis) in Abeokuta Metropolis.

Baquedano, M. (2011) Tu Huella Ecológica, Calcula tu Huella de Carbono; Editorial Cuantro Vientos: Santiago, Chile.

Dexter B. Dombro (2009) How much carbon does a tropical tree sequester? http://www.sciencedaily.com/releases/2009/02/090218135031.htm.

International Energy Agency (2009), World Energy Outlook 47–57.

Jha AK, Sharma C, Singh N, Ramesh R, Purvaja R, Gupta PK. (2008) Greenhouse gas emissions from municipal solid waste management in Indian mega-cities: A case study of Chennai landfill sites. Chemosphere;71(4):750±8.

Kuldip Singh Sangwan, Vikrant Bhakar, Vinti Arora, Prem Solanki. (2018) Measuring Carbon Footprint of an Indian University Using Life Cycle Assessment, Procedia CIRP, Volume 69, 2018, Pages 475-480, ISSN 2212-8271.

Larsen HN, Pettersen J, Solli C, Hertwich EG. (2013) Investigating the Carbon Footprint of a University - The case of NTNU. J Clean Prod;48:39-47.

Letete TCM, Marquard A. (2011) Carbon footprint of the University of Cape Town. J Energy South Africa;22(2): 2-12.

Mittal, M.L., Sharma, C. (2003) Anthropogenic emissions from energy activities in India: generation and source characterization (Part-II.): emissions from vehicular transport in India.

National institute of hydrology (2015) Indian National Committee on Climate Change (INCCC) R&D Programme of MoWR.. Available from: http://www.nih.ernet.in/inccc.html.

Ozawa-Meida L, Brockway P, Letten K, Davies J, Fleming P. (2013) Measuring carbon performance in a UK University through a consumption-based carbon footprint: De Montfort University case study. J Clean Prod; 56:185-98.

Shiv Pratap Raghuvanshi, Avinash Chandra, Ashok Kumar Raghav. (2006) Carbon dioxide emissions from coal based power generation in India, Energy Conversion and Management, Volume 47, Issue 4, Pages 427-441, ISSN 0196-8904.

Ramachandra T.V., Shwetmala, (2012) Decentralized carbon footprint analysis for opting climate change mitigation strategies in India, Renewable and Sustainable Energy Reviews, Volume 16, Issue 8, Pages 5820-5833, ISSN 1364-0321.

Thurston M, Eckelman MJ. (2011) Assessing greenhouse gas emissions from university purchases. Int J Sustain High Educ;12(3):225-235.

Van Amstel, Andre. (2006). IPCC 2006 Guidelines for National Greenhouse Gas Inventories.